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SUMMARY

We present �rst- and higher-order non-oscillatory primitive (PRI) centred (CE) numerical schemes for
solving systems of hyperbolic partial di�erential equations written in primitive (or non-conservative)
form. Non-conservative systems arise in a variety of �elds of application and they are adopted in that
form for numerical convenience, or more importantly, because they do not posses a known conser-
vative form; in the latter case there is no option but to apply non-conservative methods. In addition
we have chosen a centred, as distinct from upwind, philosophy. This is because the systems we are
ultimately interested in (e.g. mud �ows, multiphase �ows) are exceedingly complicated and the eigen-
structure is di�cult, or very costly or simply impossible to obtain. We derive six new basic schemes
and then we study two ways of extending the most successful of these to produce second-order non-
oscillatory methods. We have used the MUSCL-Hancock and the ADER approaches. In the ADER
approach we have used two ways of dealing with linear reconstructions so as to avoid spurious oscilla-
tions: the ADER TVD scheme and ADER with ENO reconstruction. Extensive numerical experiments
suggest that all the schemes are very satisfactory, with the ADER=ENO scheme being perhaps the most
promising, �rst for dealing with source terms and secondly, because higher-order extensions (greater
than two) are possible. Work currently in progress includes the application of some of these ideas to
solve the mud �ow equations. The schemes presented are generic and can be applied to any hyperbolic
system in non-conservative form and for which solutions include smooth parts, contact discontinuities
and weak shocks. The advantage of the schemes presented over upwind-based methods is simplicity
and e�ciency, and will be fully realized for hyperbolic systems in which the provision of upwind
information is very costly or is not available. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper is about designing numerical methods of the centred type (non-upwind) for com-
puting solutions to hyperbolic equations in primitive (non-conservative) form. In the last two
to three decades, there has been tremendous progress in the development and application of
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good numerical methods for hyperbolic conservation laws. Up-to-date background informa-
tion is found, for example, in the textbooks [1–5]. Almost universally, these methods are
designed to solve the equations in conservative form, and the most accurate schemes use
explicit wave propagation information (upwinding) in the schemes. The theme of this paper
is somewhat unconventional, in that we wish to design non-conservative (or primitive) meth-
ods. The reason we want to use primitive schemes is that there are systems of hyperbolic
equations that have no known conservative form. This may appear paradoxical to the reader,
in that although the equations may have been derived from physical conservation principles,
yet the resulting equations cannot be expressed in conservation-law form, or divergence form.
Prominent examples arise in the modelling of mud �ows [6–8]. Multiphase �ow modelling
is another important area of application in which the resulting governing equations cannot
always be expressed in conservation-law form [9; 10]. As a matter of fact, in the nuclear
and propulsion industries for example, there is currently a lot of research activity aimed at
deriving multiphase �ow models that can be expressed in conservative form. The reason for
searching for conservative models is that the generalization of classical (smooth) solutions of
the equations to include shock waves (weak solutions) is straightforward. This is not so for
non-conservative systems, although some interesting work in this direction is already avail-
able [11; 12], whereby non-conservative products may be de�ned at the cost of having to
provide extra information. However, it is unclear to these authors how such work would be
applicable to the physical situations mentioned above. Thus in order to solve existing non-
conservative systems numerically one must design appropriate (non-conservative) numerical
methods. When solutions are smooth there is no good reason known to these authors why one
should not use a non-conservative (primitive) method. In practice these methods perform very
well [13] and in fact there are situations in which primitive methods outperform conservative
methods [14]. Linear discontinuities (such as contact and shear waves) are well-represented
by primitive methods, those that are non-oscillatory of course. Shock waves will, however,
be computed with the wrong strength and the wrong propagation speed. In fact there is a the-
orem due to Hou and LeFloch [15] in which it is proved that non-conservative methods will
converge to the wrong solution in the presence of a shock wave. For weak shocks, however,
the methods put forward in this paper would be adequate.
The second aspect of this work concerns the philosophy to be followed in designing the

schemes. Primitive (non-conservative) schemes using upwinding have been put forward in the
past. Examples include the works of Karni [16] and Toro [17; 13]. Upwind schemes require
the explicit provision of wave propagation information. Normally this is achieved via local
solutions of the Riemann problem, approximate or exact. For most known hyperbolic systems,
the exact or approximate solution of the Riemann problem is available, although in some cases
this may be very expensive to evaluate. The systems we are interested in are very complicated
and so far the solution of the Riemann problem is not, to our knowledge, available. We
therefore have decided to adopt a centred approach, in which no explicit information regarding
wave propagation is used in the scheme, apart from stability constraints via a Courant (or
CFL) condition, for which at least the eigenvalues of the system must be known, even if it
is only numerically. But this information must in any case be available, as knowledge on the
nature of the eigenvalues would inform us on the character of the equations being solved,
hyperbolic or otherwise.
In this paper we develop primitive (PRI) centred (CE) schemes for non-conservative hy-

perbolic systems in one and multiple space dimensions. Our PRICE schemes will be based
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on the design of �rst-order, monotone, primitive centred schemes. These schemes are then
extended to second order of accuracy following two approaches, namely the MUSCL-Hancock
approach [18; 3] and the ADER approach [19–21]. In the MUSCL-Hancock approach spu-
rious oscillations are controlled via a Total Variation Diminishing (TVD) constraint. In the
ADER approach we use two types of non-linear (non-oscillatory) extensions, namely (i) a
TVD approach similar to the MUSCL-Hancock scheme, and (ii) least oscillatory polynomial
reconstructions of the ENO type [22; 21]. We also carry out an extensive and systematic as-
sessment of the designed schemes by solving the non-linear shallow water equations, written
in primitive form, augmented by a passive scalar associated with the modelling of sediment
transport. The assessment is aimed at identifying the best schemes to be recommended for
practical use, as what we have in mind next is the application of the most successful schemes
to the solution of non-conservative equations arising in the modelling of mud �ows [8].
In Section 2 we design six basic primitive centred schemes. In Section 3 we construct

second-order non-oscillatory extensions of the most promising �rst-order scheme developed
in Section 2. In Section 4 we extensively and systematically assess the methods by solving
the (augmented) one-dimensional non-linear shallow water equations and compare results
with exact solutions. Conclusions are drawn in Section 5. In Appendix A we discuss TVD
constraints and slope limiters.

2. DESIGNING PRIMITIVE CENTRED SCHEMES

2.1. Introduction

We are interested in solving hyperbolic partial di�erential equations of the form:

@tQ+A(Q)@xQ= 0 (1)

in which Q=[q1; : : : ; qn]T is the vector of unknowns and A=A(Q) is the coe�cient matrix.
We assume system (1) to be hyperbolic with real eigenvalues �1¡�2¡ · · ·¡�n and a set
of corresponding linearly independent right eigenvectors R(1); : : : ;R(n). We note here that the
numerical methods developed in this paper only require an estimate for the maximum of the
eigenvalues in absolute value; this is in order to enforce a stability condition.
The vector of unknowns Q in (1) could be the vector of physically conserved variables,

in which case A(Q) would the Jacobian matrix A(Q)≡ @F=@Q and F=F(Q) would be the
physical �ux, a vector-valued function. In such case (1) could be expressed in conservative
form

@tQ+ @xF(Q)= 0 (2)

and one could then apply any of the modern conservative shock-capturing methods available
[1–4] to solve Equation (2) numerically.
There are cases in which a non-conservative formulation (1) has some advantages over

the conservative formulation (2). More importantly, there are many situations of practical
interest in which no known conservative form of the equations exists. This is the case in
environmental �uid dynamics, two-phase �ows and other application areas, and this is in fact
the main motivation of this paper.
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2.2. PRICE schemes of the Lax–Wendro�–Godunov type

2.2.1. The framework and updating formula. Consider a control volume Vi=[xi−1=2; xi+1=2]
× [t n; t n+1] in x − t space. Integration of (1) in Vi gives∫ xi+1=2

xi−1=2

∫ t n+1

t n
[@tQ+A(Q)@xQ] dx dt= 0 (3)

Assume a local linearization in (3) with a constant matrix Âi. Then, integration gives∫ xi+1=2

xi−1=2

Q(x; t n+1) dx=
∫ xi+1=2

xi−1=2

Q(x; t n) dx − Âi

[∫ t n+1

t n
Q(xi+1=2; t) dt −

∫ t n+1

t n
Q(xi−1=2; t) dt

]
(4)

De�ne space and time averages as

Qn
i =

1
�x

∫ xi+1=2

xi−1=2

Q(x; t n) dx; Qi+1=2 =
1
�t

∫ t n+1

t n
Q(xi+1=2; t) dt (5)

where �x= xi+1=2 − xi−1=2 and �t= t n+1 − t n. With these de�nitions (4) becomes

Qn+1
i =Qn

i −
�t
�x

Âi[Qi+1=2 −Qi−1=2] (6)

Assuming the control volume Vi de�nes a mesh in x− t space, then (6) provides a numerical
formula to advance the solution in time from time level n to time level n + 1, provided
the coe�cient matrix Âi and the intermediate state Qi+1=2 are de�ned, which now is an
approximation of the corresponding time average in (5).
As to the choice of the coe�cient matrix Âi one could, for example, select

Âi=A(Qn
i )≡An

i (7)

Other choices are also possible. Regarding the choice of intermediate states Qi+1=2 we shall
adopt a centred (non-upwind) approach. Upwind non-conservative schemes were put forward
in Reference [13].

Remark
A more elaborate framework results from keeping the matrix A(Q) in (3) and using integration
by parts. This lead to

∫ xi+1=2

xi−1=2

Q(x; t n+1) dx=
∫ xi+1=2

xi−1=2

Q(x; t n) dx −
∫ t n+1

t n
[A(Q)Q(xi+1=2; t)

−A(Q)Q(xi−1=2; t)]dt −
∫ t n+1

t n

[∫ xi+1=2

xi−1=2

@xA(Q)Q dx

]
dt




(8)

This would result in more complex schemes and we have not pursued this route further, as
the simpler schemes (6) lead to very satisfactory results.
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Multidimensional versions of (6) that are unsplit or simultaneous updating formulae can
derived in a similar way. For example, for a two-dimensional system in Cartesian co-ordinates

@tQ+A(Q)@xQ+ B(Q)@yQ=0 (9)

one can write schemes of the form

Qn+1
i =Qn

i −
�t
�x

Âij[Qi+1=2; j −Qi−1=2; j]− �t
�y

B̂ij[Qi; j+1=2 −Qi; j−1=2] (10)

Similar formulae may be derived for the 3D case. Alternatively, one may use dimensional
splitting to extend (6) to solve (9) and its 3D version.
In the following subsections we construct intermediate states Qi+1=2 that completely deter-

mine the solution updating schemes (6) and (10). We shall study two approaches, both of
them using centred (non-upwind) schemes.

2.2.2. Some useful integral relations. The task at hand now is to obtain expressions for the
intermediate vectors Qi+1=2, that are some kind of numerical analogue of the time average
given in (5). We obtain an expression for Q(xi+1=2; ��t), where 06�61, by integrating (1)
in the control volume [xi+1=2− 1

2�x; xi+1=2+ 1
2�x]× [0; ��t] following an analogous procedure

to the one leading to (6), namely

∫ xi+1=2+
1
2� x

xi+1=2− 1
2� x

Q(x; ��t) dx

=
∫ xi+1=2+

1
2� x

xi+1=2− 1
2� x

Q(x; 0) dx − Âi+1=2

×
[∫ ��t

0
Q
(
xi+1=2 +

1
2
�x; t

)
dt −

∫ ��t

0
Q
(
xi+1=2 − 1

2
�x; t

)
dt

]
(11)

Dividing through by �x and setting

Q
(
xi+1=2 − 1

2
�x; t

)
=Qn

i ; Q
(
xi+1=2 +

1
2
�x; t

)
=Qn

i+1; Âi+1=2 =A
(
1
2
[Qn

i +Q
n
i+1]
)
(12)

under a CFL-like condition, we obtain

Q�
i+1=2 =

1
�x

∫ xi+1=2+
1
2� x

xi+1=2− 1
2� x

Q(x; ��t) dx=
1
2
(Qn

i +Q
n
i+1)− �

�t
�x

Âi+1=2(Qn
i+1 −Qn

i ) (13)

We can now construct schemes (6) by direct use of integral relation (13) to obtain inter-
mediate states.
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2.2.3. PRICE-LW: a primitive Lax–Wendro� scheme. For �= 1
2 in (13) we obtain

QPRICE-LW
i+1=2 =

1
2
(Qn

i +Q
n
i+1)−

1
2
�t
�x

Âi+1=2(Qn
i+1 −Qn

i ) (14)

Inserting this into the solution updating formula (6) gives a scheme that is analogous to
the two-step Lax–Wendro� method developed originally for conservative systems [23]. The
resulting PRICE-LW scheme is second-order accurate in space and time and oscillatory in the
vicinity of large gradients.

2.2.4. PRICE-G: the Godunov centred approach. Godunov [24] developed a centred con-
servative scheme (not to be confused with his well-known upwind scheme) that is not par-
ticularly well-known but has some attractive and intriguing features. Here we develop a non-
conservative analogue to be applied to (1) via (6). In fact the way the intermediate state
Qi+1=2 is found is entirely analogous to that leading to (6), (13), in which we simply take
�=1 leading to

QPRICE-G
i+1=2 =

1
2
(Qn

i +Q
n
i+1)−

�t
�x

Âi+1=2(Qn
i+1 −Qn

i ) (15)

with Âi+1=2 as in (12). Inserting this into the solution updating formula (6) gives the primitive
centred Godunov scheme PRICE-G, which when applied to the model equation

@tq+ �@xq=0 (16)

with � a constant wave propagation speed, gives

qn+1
i =

1
2
c(1 + 2c)qn

i−1 + (1− 2c2)qn
i −

1
2
c(1− 2c)qn

i+1 (17)

Here c= �(�t=�x) is the Courant number, or CFL number. It is easy to show that this
scheme has linearized stability condition

06|c|61
2

√
2 (18)

It is interesting to note that this �rst-order scheme is not monotone in the stability range
06|c|6 1

2 and is monotone in the stability range
1
26|c|6 1

2

√
2. Our experience is that the loss

of monotonicity is not too serious for this scheme, in the sense that the spurious oscillations
produced near large gradients have small amplitude. Strictly speaking, however, any attempt at
constructing high-order extension of the TVD type, for example, will be unsuccessful. These
schemes can be constructed under the assumption that the underlying �rst-order scheme is
monotone throughout its stability range.

2.3. PRICE-LF: a Lax–Friedrichs type centred scheme

The point of departure here is the observation [3] that the conservative Lax–Friedrichs scheme
can be constructed from

Qn+1
i =

1
�x

∫ xi+1=2

xi−1=2

Q̂i

(
x;
1
2
�t
)
dt (19)
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when Qi represents the vector of conserved variables and Q̂i(x; t) is the solution of the
Riemann problem for the relevant system of conservation laws with initial condition

Q(x; 0)=

{
Qn

i−1 if x¡0

Qn
i+1 if x¿0

(20)

We emphasize that the solution Q̂i has as its initial states the two neighbours at i − 1 (left)
and i + 1 (right). See Section 7.3.1 of Reference [3] for details on this interpretation of the
Lax–Friedrichs scheme for conservative systems.
Here we apply the same approach to the non-conservative system (1) and in which Q in

(19) is any set of representative variables, including conservative variables. Following steps
analogous to those leading to the derivation of (13) we obtain

Qn+1
i =

1
2
(
Qn

i−1 +Q
n
i+1

)− 1
2
�t
�x

Âi
(
Qn

i+1 −Qn
i−1
)

(21)

with the matrix Âi evaluated as

Âi=A
(
1
2
[Qn

i+1 +Q
n
i−1]

)
(22)

This scheme may be rewritten as

Qn+1
i =Qn

i −
�t
�x

[QL
i+1=2 −QR

i−1=2] (23)

with intermediate states

QL
i+1=2 =

1
2
Âi(Qn

i +Q
n
i+1)−

1
2
�x
�t
(Qn

i+1 −Qn
i ) (24)

QR
i−1=2 =

1
2
Âi(Qn

i−1 +Q
n
i )−

1
2
�x
�t

(Qn
i −Qn

i−1) (25)

It is easy to check that the above two di�erent forms (21) and (23) of the PRICE-LF scheme
are equivalent. The scheme that we have obtained, when applied to the model equation (16)
gives the conventional Lax–Friedrichs scheme. This scheme is �rst-order accurate, monotone
and with the stability condition

|c|61 (26)

where c is the CFL number.

2.4. PRICE schemes of the FORCE type

Here we construct primitive schemes that are analogues of the FORCE method, �rst developed
for conservative systems. Anile et al. [25] appear to be the �rst authors to have constructed a
primitive analogue of the FORCE scheme. Their approach, however, requires the use of the

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1263–1291



1270 E. F. TORO AND A. SIVIGLIA

2

2

n

n+1/2 n+1/2

n

n+1

Random sampling

Random
sampling

Random
sampling

i-1/2 i+1/2i-1 i i+1

∆

∆t

t

Figure 1. Illustration of the random choice method (RCM) on a staggered grid.
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Figure 2. Illustration of the PRICE-T scheme derived from the staggered-grid RCM.

conservative form of the equations, whereas the schemes presented here do not and are thus
more general.

2.4.1. PRICE-T: a scheme based on staggered grid RCM. A deterministic re-interpretation
[26] of the staggered-grid version of the Random Choice Method (RCM) of Glimm [27],
whereby randomly sampled solutions of local Riemann problems are replaced by integral av-
erages, leads to a �rst-order centred conservative method, called the FORCE method [26]; see
also References [3; 28]. In the conservative case, it is surprising to �nd that the resulting nu-
merical �ux is the arithmetic mean of the Lax–Friedrichs �ux and the two-step Lax–Wendro�
�ux. Here we construct an analogous non-conservative scheme that has a form di�erent from
that of the conservative FORCE scheme. This is shown below.
We �rst review of RCM on a staggered grid. The staggered grid version of the RCM updates

Qn
i to a new value Q

n+1
i in two steps, as illustrated in Figures 1 and 2. The steps are:

• Step (I). Solve the Riemann problems RP(Qn
i−1;Q

n
i ) and RP(Qn

i ;Qn
i+1) to �nd respective

solutions

Q̂n+1=2
i−1=2 (x; t); Q̂n+1=2

i+1=2 (x; t) (27)
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Random sample these solutions at a stable time 1
2�t, that is

Qn+1=2
i−1=2 = Q̂

n+1=2
i−1=2 (�

n�x;�t n+1=2); Qn+1=2
i+1=2 = Q̂

n+1=2
i+1=2 (�

n�x;�t n+1=2) (28)

where �n is a random number in the interval [− 1
2 ;
1
2 ].

• Step (II). Solve RP(Qn+1=2
i−1=2 ;Q

n+1=2
i+1=2 ) to �nd solution Q̂

n+1
i (x; t) and random sample it,

at a stable time 1
2�t, to obtain Qn+1

i , that is

Qn+1
i = Q̂n+1

i (�n+1�x;�t) (29)

We now derive the PRICE-T scheme. This is a primitive centred scheme that is obtained
by replacing the stochastic steps (28)–(29) by deterministic versions, via integral averages
of Riemann problem solutions and using the non-conservative form of Equation (1). The
stochastic quantities (28) are replaced by the deterministic integrals

Qn+1=2
i−1=2 =

1
�x

∫ 1=2� x

−1=2� x
Q̂n+1=2

i−1=2

(
x;
�t
2

)
dx (30)

and

Qn+1=2
i+1=2 =

1
�x

∫ 1=2� x

−1=2� x
Q̂n+1=2

i+1=2

(
x;
�t
2

)
dx (31)

Then we apply the integral form of the non-conservative equations (1), namely Equation (4)
but on a control volume Vi=[xi+1=2 − 1

2�x; xi+1=2 + 1
2�x]× [0; 12�t] around x= xi+1=2. The

result is

Qn+1=2
i+1=2 =

1
2
(Qn

i +Q
n
i+1)−

1
2
�t
�x

Âi+1=2[Qn
i+1 −Qn

i ] (32)

Similarly,

Qn+1=2
i−1=2 =

1
2
(Qn

i−1 +Q
n
i )−

1
2
�t
�x

Âi−1=2[Qn
i −Qn

i−1] (33)

We denote by Q̂i(x; t) the solution of the Riemann problem RP(Qn+1=2
i−1=2 ;Q

n+1=2
i+1=2 ) and de�ne an

average Qn+1
i at the complete time step �t in terms of an integral average of Q̂i(x; t) at the

(local) time t= 1
2�t, namely

Qn+1
i =

1
�x

∫ 1=2� x

−1=2� x
Q̂i

(
x;
1
2
�t
)
dx (34)

This is the deterministic version of (29), which from (13) gives a new solution updating
formula

Qn+1
i =

1
2
(Qn+1=2

i−1=2 +Q
n+1=2
i+1=2 )−

1
2
�t
�x

Âi(Q
n+1=2
i+1=2 −Qn+1=2

i−1=2 ) (35)

We take

Âi=A
(
1
2
[Qn+1=2

i−1=2 +Q
n+1=2
i+1=2 ]

)
; Âi+1=2 =A

(
1
2
[Qn

i +Q
n
i+1]
)

(36)
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We call PRICE-T the scheme (35) with intermediate states (32). When applied to the model
equation (16), the derived PRICE-T scheme is found to be

qn+1
i =

1
4
(1 + c)2qn

i−1 +
1
2
(1− c2)qn

i +
1
4
(1− c)2qn

i+1 (37)

This is the FORCE scheme [26; 28], which is �rst-order accurate, monotone and has linearized
stability condition (26). As a matter of fact, it has been proved that FORCE is the optimal
centred scheme in the sense that it is the least dissipative of all three-point centred methods
that are monotone and have stability condition (26); see Reference [29] for details.

2.4.2. PRICE-F. For conservative systems a �rst-order centred scheme (FORCE) is presented
in Reference [26] that is based on the staggered grid version of RCM, just as PRICE-T for
non-conservative systems. However, in the case of conservative systems it is fortuitous that
the numerical �ux turns out to be identically an arithmetic mean of the �uxes for the two-step
Lax–Wendro� and Lax–Friedrichs methods. For non-conservative non-linear systems this is
not the case, as is shown in the derivation of the PRICE-T scheme. However if we compute
an arithmetic average of the solutions obtained from the PRICE-LW and PRICE-LF methods
we obtain a non-conservative scheme that is analogous to the FORCE method. In this way,
a scheme which we call PRICE-F, is obtained as follows:

Qn+1(PRICE−F)
i =

1
2
(Qn+1(PRICE−LW)

i +Qn+1(PRICE−LF)
i ) (38)

Here Qn+1(PRICE−LW)
i is the solution at time level n+1 obtained from the PRICE-LW scheme

(6), (14) and Qn+1(PRICE-LF)
i is the solution at time level n+ 1 obtained from the PRICE-LF

scheme (21).

2.4.3. PRICE-S. It is also possible to obtain a non-conservative scheme that is analogous to
the FORCE method, by averaging the two intermediate states from the PRICE-LW and the
PRICE-LF as follows:

Q(PRICE−S)
i+1=2 =

1
2
(Q(PRICE−LW)

i+1=2 +Q(PRICE−LF)
i+1=2 ) (39)

where

QPRICE−LW
i+1=2 =

[
1
2
(Qn

i +Q
n
i+1)−

1
2
�t
�x

Âi+1=2(Qn
i+1 −Qn

i )
]
Ai (40)

and Q(PRICE−LF)
i+1=2 is computed as in (24). Inserting (39) into the updating formula

Qn+1
i =Qn

i −
�t
�x

[Qi+1=2 −Qi−1=2] (41)

we obtain a new scheme which we call PRICE-S and which is analogous to the FORCE
scheme developed originally for conservative systems.
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Table I. Basic schemes constructed.

Basic schemes

PRICE-LW Primitive centred version of the Lax–Wendro� method
PRICE-G Primitive centred version of Godunov’s method
PRICE-LF Primitive centred version of the Lax–Friedrichs method
PRICE-T Primitive centred analogue 1 of the FORCE method
PRICE-F Primitive centred analogue 2 of the FORCE method
PRICE-S Primitive centred analogue 3 of the FORCE method

Table II. Summary of intermediate states and updating formulae for the basic schemes constructed.

Basic schemes Intermediate state Qi+1=2 = Updating formula Qn+1
i =

PRICE-LW 1
2 (Q

n
i +Q

n
i+1)− 1

2
�t
� x Âi+1=2(Qn

i+1 −Qn
i ) Qn

i − �t
� x Âi[Qi+1=2 −Qi−1=2]

PRICE-G 1
2 (Q

n
i +Q

n
i+1)− �t

� x Âi+1=2(Qn
i+1 −Qn

i ) Qn
i − �t

� x Âi[Qi+1=2 −Qi−1=2]

PRICE-LF [ 12 (Q
n
i +Q

n
i+1)− 1

2
�t
� x Âi+1=2(Qn

i+1 −Qn
i )]Ai Qn

i − �t
� x [Qi+1=2 −Qi−1=2]

PRICE-T 1
2 (Q

n
i +Q

n
i+1)− 1

2
�t
� x Âi+1=2(Qn

i+1 −Qn
i )

1
2 [Q

n+1=2
i−1=2 +Q

n+1=2
i+1=2 ]− 1

2
�t
� x

× Âi[Q
n+1=2
i+1=2 −Qn+1=2

i−1=2 ]

PRICE-F Not needed 1
2 (Q

n+1(PRICE-LW)
i +Qn+1(PRICE-LF)

i )

PRICE-S 1
2 (Q

(PRICE
i+1=2 -LW) +Q

(PRICE
i+1=2 -LF)) Qn

i − �t
� x [Qi+1=2 −Qi−1=2]

Remark

In general, for a non-linear system we have

Qn+1(PRICE−F)
i �=Qn+1(PRICE−T)

i (42)

Qn+1(PRICE−S)
i �=Qn+1(PRICE−T)

i (43)

Qn+1(PRICE−F)
i �=Qn+1(PRICE−S)

i (44)

where Qn+1(PRICE−T)
i is the solution provided by the PRICE−T scheme (35) and (32). Equality

is possible for some special ways of linearizing the equations in order to evaluate the coef-
�cient matrix. However for linear systems with constant coe�cients equality in (42) holds,
and for the model equation (16) all the three schemes reproduce the FORCE method (37),
which is �rst order, monotone and has linearized stability condition (26).

2.5. Summary of the basic schemes

To help the reader we have summarized the main steps of the schemes designed in this
section in Tables I and II. Table I describes the schemes, while Table II gives, in the third
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column, the updating formula to advance the solution from time level n to time level n+ 1
and the second column gives the intermediate state to advance the solution.
In the next section we study two approaches for constructing second-order non-oscillatory

extensions of the �rst-order schemes studied here.

3. SECOND-ORDER NON-OSCILLATORY EXTENSIONS

We study two approaches. The �rst follows the MUSCL-Hancock idea originally developed
for conservative methods [18] and later applied to non-conservative upwind methods [13]. For
background reading see Reference [3; Section14:4]. The second approach follows the advection-
di�usion-reaction (ADER) philosophy [19], used to construct non-oscillatory schemes of very
high order of accuracy and has so far only been used to design conservative schemes [20; 21].
Both of these approaches for constructing non-oscillatory high order methods require a mono-
tone scheme as the building block. Of the six basic schemes designed in Section 2 there are
four schemes that ful�l the monotonicity requirement, namely PRICE-LF, PRICE-T, PRICE-F
and PRICE-S. In this section we only implement second-order non-oscillatory extension of
the most promising of the basic schemes, namely PRICE-T.

3.1. MUSCL-Hancock type TVD schemes

For primitive centred schemes the MUSCL-Hancock approach has the following three steps:

• (I) MUSCL reconstruction constrained by a TVD condition, namely

Qi(x)=Qn
i +

(x − xi)
�x

��i (45)

where ��i is a limited slope (di�erence) so as to avoid spurious oscillations near large
gradients of the solution. Details on the evaluation of ��i using TVD constraints and
slope limiters are given in Appendix A. Boundary extrapolated values of the primitive
states are

QL
i =Q

n
i −

1
2
��i ; QR

i =Q
n
i +

1
2
��i (46)

• (II) Evolution of these primitive states by a time 1
2�t as follows:

�QL;R
i =QL;R

i − 1
2
�t
�x

An
i (Q

R
i −QL

i ) (47)

• (III) Computation of intermediate states Qi+1=2. This is done by evaluation of interme-
diate states applying the PRICE-T scheme of the previous section, namely

QPRICE-T
i+1=2 =QPRICE-T

i+1=2 ( �QR
i ; �Q

L
i+1) (48)

Then the intermediate state becomes

Qn+1=2
i+1=2 =

1
2
( �QR

i + �QL
i+1)−

1
2
�t
�x

Âi+1=2[ �QL
i+1 − �QR

i ] (49)
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with

Âi+1=2 =A
(
1
2
( �QR

i + �QL
i+1)

)
(50)

which is then used in the solution updating formula (35).

3.2. ADER-type schemes

In this section we develop primitive centred schemes following the ADER philosophy [19].
The ADER approach is a generalization of the Modi�ed GRP scheme of Toro [30], which in
turn is based on the second-order GRP approach of Ben-Artzi and Falcovitz [30]. The ADER
approach allows the construction of schemes of arbitrary accuracy in both space and time
[21; 31; 32].

3.2.1. TVD ADER schemes. The task at hand is the computation of intermediate states
Qi+1=2 in (6) or in (32)–(33) for use in (35). First we present a TVD version of the ADER
scheme. Assume a MUSCL linear reconstruction as in (45). The problem is then to �nd an
intermediate state Qi+1=2 corresponding to initial conditions of the form:

Q(x; 0)=

{
Qi(x) if x¡xi+1=2

Qi+1(x) if x¿xi+1=2
(51)

for Equations (1). A Taylor expansion about t=0 at x= xi+1=2 gives

�Qi+1=2(�)=Q
(0)
i+1=2 + �@tQ+O(�2) (52)

where O(�2) means that terms of second and higher order have been neglected. Here Q(0)
i+1=2

accounts for the �rst instant interaction of the linear states in (51) and may be computed in
terms of the boundary extrapolated values given by (46), namely

Q(0)
i+1=2 =Q

PRICE-T
i+1=2 (QR

i ;Q
L
i+1) (53)

Regarding the computation of the second term involving @tQ, use of (1) gives

@tQ= −A(0)i+1=2@xQ (54)

where A(0)i+1=2 =A(Q
(0)
i+1=2). Then (52) becomes

Qi+1=2(�)=Q
(0)
i+1=2 − �A(0)i+1=2@xQ (55)

where @xQ remains to be computed. Then we de�ne

V≡ @xQ (56)

and note that V obeys the linear evolution system

@tV+A
(0)
i+1=2@xV= 0 (57)
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We pose and solve the derivative Riemann problem for (57) with initial condition

V(x; 0)=

{
VL ≡ (@xQ)i=

��i
� x

VR ≡ (@xQ)i+1 =
��i+1
� x

(58)

This is resolved using the (PRICE-T) �rst-order monotone schemes of Section 2, namely

Q(1)
i+1=2 =Q

PRICE-T
i+1=2

(
��i

�x
;
��i+1

�x

)
(59)

Then (55) becomes

Qi+1=2(�)=Q
(0)
i+1=2 − �A(0)i+1=2Q

(1)
i+1=2 (60)

Finally, evaluation of the time-integral average of (60) between t=0 and t=�t, as in (5),
gives the intermediate state

QADER-TVD
i+1=2 =Q(0)

i+1=2 −
1
2
�tA(0)i+1=2Q

(1)
i+1=2 (61)

Then (61) is used in the solution updating formula (35).

3.2.2. ENO version of ADER. A variant of scheme (61) may be obtained from the ENO
approach to polynomial reconstruction, whereby uniform second-order accuracy of the scheme
is maintained for smooth solutions. This feature of the resulting scheme would reduce the
clipping of extrema produced by the TVD schemes.
As we are interested in second-order accurate schemes we only need a linear reconstruction

of the data using a �rst-order polynomial

Pi(x)=Qn
i + Si(x − xi) (62)

Following Harten and Osher [33], within a cell Ii=[xi−1=2; xi+1=2] there are three possible
linear reconstructions characterized by three di�erent slopes, which can be written as

S1i =
Qn

i+1 −Qn
i − 1

2 (Q
n
i+2 − 2Qn

i+1 +Q
n
i )

�x
(63)

S2i =
Qn

i+1 −Qn
i − 1

2 (Q
n
i+1 − 2Qn

i +Qn
i−1)

�x
(64)

S3i =
Qn

i −Qn
i−1 +

1
2(Q

n
i − 2Qn

i−1 +Q
n
i−2)

�x
(65)

In the ENO approach [22] one selects the polynomial with the smallest divided di�erence in
absolute value. In the case of linear reconstruction this amounts to choosing the line with the
smallest gradient or slope in absolute value, that is

Si=
1
�x

minmod[S+i ; S−
i ] (66)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1263–1291



PRICE: PRIMITIVE CENTRED SCHEMES FOR HYPERBOLIC SYSTEMS 1277

where

S+i =Q
n
i+1 −Qn

i −
1
2
minmod(Qn

i+1 − 2Qn
i +Q

n
i−1;Q

n
i+2 − 2Qn

i+1 +Q
n
i ) (67)

S−
i =Q

n
i −Qn

i−1 +
1
2
minmod(Qn

i+1 − 2Qn
i +Q

n
i−1;Q

n
i − 2Qn

i−1 +Q
n
i−2) (68)

and the minmod function chooses the smallest argument in absolute value if the arguments
have the same sign and chooses zero otherwise.
Thus the boundary extrapolated values to be used in the ADER scheme are

QR
i =Q

n
i +

1
2
�xSi=Pi(xi+1=2); QL

i =Q
n
i −

1
2
�xSi=Pi(xi−1=2) (69)

Then we compute QADER-ENO
i+1=2 as in (61), with Q(0)

i+1=2 and Q
(1)
i+1=2 computed as in (53) and

(59), respectively. Finally, QADER-ENO
i+1=2 is used in the solution updating formula (35) if the

PRICE-T scheme is adopted.

4. NUMERICAL RESULTS AND DISCUSSION

The numerical methods presented in this paper are generic and are applicable to any ho-
mogeneous system of hyperbolic equations. In this section we assess the performance the
proposed methods using a model hyperbolic system written in primitive form, namely the
time-dependent non-linear shallow water equations augmented by a passive scalar. The model
system selected contains the essential features of hyperbolic systems to be encountered in prac-
tice, such as non-linear wave propagation, with smooth and discontinuous solutions. Moreover,
for su�ciently simple initial conditions, such as those for a Riemann problem, the equations
have exact solutions including rarefaction waves, contact discontinuities and shock waves.
These exact solutions are invaluable in systematically assessing the performance of numerical
methods intended for the solution of complex systems of equations of physical relevance. At
this stage, we are assessing new numerical methods, we are not solving practical problems yet.
The equations written in non-conservative (primitive) form are

@tQ+A(Q)@xQ= 0 (70)

where

Q=



h

u

 


 ; A=



u h 0

g u 0

0 0 u


 (71)

Here h= h(x; t) is water depth, u= u(x; t) is particle velocity,  =  (x; t) is a passive scalar
(e.g. pollutant concentration) and g (constant) is the acceleration due to gravity. The choice
of primitive variables is not unique; other choices are also possible. Further details on the
shallow water equations are found in Reference [4]. This hyperbolic system has real eigen-
values �1 = u−a, �2 = u and �3 = u+a, where a=

√
gh is the celerity. The eigenvalue �2 = u

corresponds to the contact wave associated with the passive scalar (concentration)  . These
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equations are non-linear and contain smooth and discontinuous solutions, which pose chal-
lenges to any numerical method intended for solving realistic problems. We select two test
problems with exact solutions. These exact solutions are used to carefully assess the perfor-
mance of the methods presented in this paper.
Test 1 solves (70) in the domain [0; 50] with initial condition

h(x; 0)= hL=1 if x625 and h(x; 0)= hR= 1
2 if x¿25

u(x; 0)=0 ∀x ∈ [0; 50]
 (x; 0)=  L=1 if x625 and  (x; 0)=  R=0 if x¿25

(72)

Computed and exact solutions are displayed at time t=5s. The exact solution of this problem
contains a left rarefaction, a right-facing shock wave and a contact discontinuity in the middle,
across which the concentration  changes discontinuously. Rarefaction waves are smooth
waves and numerical methods should be able to resolve these features accurately, especially
their heads and tails, which contain discontinuities in spatial derivatives. Shock waves are
discontinuous waves associated with the genuinely non-linear �elds u − a and u + a. These
waves require (i) correct speed of propagation, (ii) sharp resolution of the transition zone and
(iii) absence of spurious oscillations around the shock. Our primitive schemes are theoretically
unable [15] to compute shocks with the correct propagation speed; however their sharpness and
absence of spurious oscillations are achieved very satisfactorily. Contact waves are associated
with the linearly degenerate �eld �2 = u. The requirements for the computation of these waves
are as for shocks, namely (i) to (iii) above. Our primitive centred schemes are able to meet all
of the above requirements, with (ii) requiring quali�cation. In general, computation of waves
associated with linearly degenerate �elds is very challenging, even for modern numerical
methods. One main di�culty is to preserve sharpness in the resolution of these waves in
long-time evolution problems. Upwind methods are distinctly better than centred methods for
these problems. In particular, good upwind methods resolve stationary, isolated contact waves
exactly, while centred methods are here at their worst; our methods do not escape these
observations. We note here that not all upwind-based methods resolve linear waves correctly;
for example schemes based on �ux vector splitting and those based on the HLL Riemann
solver will behave like centred methods for linear �elds, see Reference [3]. We emphasize
that our primitive schemes can compute contact discontinuities with the correct propagation
speed, as will be illustrated through the test problems.
Test 2 solves (70) in the domain [0; 50] with initial condition

h(x; 0)=1 ∀∈ [0; 50]
u(x; 0)= uL= − 5 if x625 and u(x; 0)= uR=5 if x¿25

 (x; 0)=  L=1 if x625 and  (x; 0)=  R=0 if x¿25

(73)

Computed and exact solutions are displayed at time t=2:5s. The exact solution of this problem
consists of two symmetric rarefaction waves and a stationary contact wave. Water depth and
particle velocity are smooth throughout, while concentration changes discontinuously across
the contact wave of zero speed of propagation. This test problem is challenging in two respects.
First, many otherwise good numerical methods fail here because the strong rarefactions in the
solution lead the schemes to compute negative water depths, which is obviously incorrect.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1263–1291



PRICE: PRIMITIVE CENTRED SCHEMES FOR HYPERBOLIC SYSTEMS 1279

0.25

0.5

0.75

1

0 10 20 30 40 50

D
ep

th
 h

(x
)

0.25

0.5

0.75

1

0 10 20 30 40 50

0

0.25

0.5

0.75

1

0 10 20 30 40 50

V
el

oc
ity

 u
(x

)

0

0.25

0.5

0.75

1

0 10 20 30 40 50

0

0.25

0.5

0.75

1

0 10 20 30 40 50

C
on

ce
nt

ra
tio

n 
c(

x)

Position x

0

0.25

0.5

0.75

1

0 10 20 30 40 50

Position x

Figure 3. Test 1: PRICE-LW scheme (symbol) and exact solution (line). Results at time t=5:0 s for
mesh M =100 (left) and M =500 (right) and CFL=0:95.

Codes crash when attempting to compute celerities. This problem is more severe for higher-
order methods. The second di�culty is the correct resolution of the stationary contact wave.
Our centred methods are not the best for this type of waves, but at least their speed of
propagation is, on the average, correct and no spurious oscillations appear in the vicinity of
the wave.
Numerical results are given in Figures 3–12. In all cases we have compared the numerical

solution (symbols) with the exact solution (full line). In each �gure the left column of results
are obtained using a coarse mesh while the right column of results are obtained using a �ne
mesh. Figures 3–8 show the basic schemes constructed in Section 2 while Figures 9–12 show
results for some of the second-order methods constructed in Section 3. The results shown in
Figure 3 are obtained from scheme PRICE-LW, which is the non-conservative analogue of
the two-step Lax–Wendro� method. The scheme is second order and linear, and therefore
oscillatory. This is clearly seen by the oscillatory behaviour of the numerical solution in the
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Figure 4. Test 1: PRICE-LF �rst-order scheme (symbol) and exact solution (line). Results at time
t=5:0 s for mesh M =100 (left) and M =500 (right) and CFL=0:95.

vicinity of large gradients (shock, contact and also near the tail of the rarefaction). Also the
position of the shock has a visible error; this is an expected feature of this non-conservative
scheme. The �ne mesh results in the right column of Figure 3 seem to indicate that the
numerical solution converges to the wrong solution of the problem, see Reference [15] for a
theoretical explanation.
The results of Figures 4–8 are all obtained from �rst-order monotone non-conservative

schemes. Figure 4 shows the results obtained from PRICE-LF, the non-conservative analogue
of the Lax–Friedrichs method. Three features stand out. The scheme shows pairing of neigh-
bouring points, typical of the classical conservative Lax–Friedrichs scheme. The scheme is
also very di�usive but monotone, again two features of the classical Lax–Friedrichs scheme.
An interesting property of this non-conservative Lax–Friedrichs type scheme is that the posi-
tion of the shock has only a small error. This is more clearly seen on the �ne mesh results
on the right-hand column. We also note that the position of the contact discontinuity seems
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Figure 5. Test 1: PRICE-G �rst-order scheme (symbol) and exact solution (line). Results at time
t=5:0 s for mesh M =100 (left) and M =500 (right) and CFL=0:7.

to be, on average, correct. This scheme could, in principle, form the basis for constructing
high-order primitive centred methods. Figure 5 shows results for the PRICE-G scheme, the
non-conservative analogue of the centred Godunov scheme. Note that for these results we
have used a CFL number of 0.7, as this scheme has a more restrictive stability condition.
As predicted, this �rst-order scheme is oscillatory; the oscillations are more visible for the
slower waves. We note that the positional error of the shock wave is not large, but in general
this scheme is not useful as it stands. High-order extensions could not be constructed, at
least using current approaches, as these assume that the building block is a monotone scheme
throughout its stability range. Figures 6–8 show results of three monotone �rst-order schemes
with optimal stability range of CFL number unity. Figure 6 shows the results for the PRICE-T
scheme which is a deterministic re-interpretation of the staggered grid random choice method.
No spurious oscillations are seen and the results are distinctively more accurate than those
of the primitive Lax–Friedrichs scheme PRICE-LF, shown in Figure 4. We also note that the
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Figure 6. Test 1: PRICE-T �rst-order scheme (symbol) and exact solution (line). Results at time
t=5:0 s for mesh M =100 (left) and M =500 (right) and CFL=0:95.

position of the shock has a very small error, certainly much smaller than that of PRICE-LW,
Figure 3, and that of PRICE-G, Figure 5. This scheme appears to have the right properties
for constructing high-order versions. Figures 7 and 8 shows the results obtained, respectively,
with PRICE-F and PRICE-S, two more direct primitive analogues of the conservative FORCE
scheme. Overall the results look very similar to those of PRICE-T, shown in Figure 6. As
pointed out in Section 2 PRICE-T, PRICE-F and PRICE-S are identical for linear system with
constant coe�cients. We note that the positional error of the shock wave in the PRICE-F and
PRICE-S schemes is larger than that of PRICE-T; the resolution of the other two waves is
virtually identical in all three schemes. Based on the results of test 1 it seems as if PRICE-T
is the best of all the schemes designed in Section 2. The closest competitors are PRICE-F
and PRICE-S but these, in addition to the shock-positional error, have the disadvantage of
being more complex and requiring more arithmetic operations.
We now discuss numerical results of some of the second-order methods constructed in

Section 3. Figures 9 and 10 show results for the MUSCL-Hancock TVD extension of the
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Figure 7. Test 1: PRICE-F �rst-order scheme (symbol) and exact solution (line). Results at time
t=5:0 s for mesh M =100 (left) and M =500 (right) and CFL=0:95.

PRICE-T scheme with a superbee-like limiter (see Equation (A6) in Appendix A), as applied
to tests 1 and 2. Figures 11 and 12 show results for the ADER extension of the PRICE-
T scheme, with ENO reconstruction, for tests 1 and 2. The results of Figure 9 are indeed
very satisfactory. There is good resolution of the smooth part of the �ow and high resolution
of discontinuities without spurious oscillations. The �ne mesh results on the right column
suggests that the scheme converges to a solution which is very close to the exact solution.
The results of Figure 10, test 2, are generally satisfactory. Here the solution is smooth, except
for the contact wave (concentration). No di�culties with depths near zero in the middle
of the domain are experienced. However, the resolution of the tails of the two rarefactions
(see the velocity plot) and that of the contact wave (see concentration plot) is not very
satisfactory. Stationary discontinuities, as the one in this test problem, are the most di�cult
waves for centred (both primitive and conservative) schemes to resolve correctly; for these
waves they have the largest dissipation, leading to spreading of the wave as time increases.
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Figure 8. Test 1: PRICE-S �rst-order scheme (symbol) and exact solution (line). Results at time
t=5:0 s for mesh M =100 (left) and M =500 (right) and CFL=0:95.

Good upwind methods, on the other hand, have a very clear advantage here, as they are able
to resolve isolated stationary discontinuities exactly. The right column of Figure 9 shows �ne
mesh results. The scheme appears to converge to the correct solution, as the mesh is re�ned,
although the behaviour of the scheme near the centre, under mesh re�nement, is not totally
satisfactory, convergence is very slow.
Figures 11 and 12 show the corresponding results for the ADER scheme with ENO recon-

structions. These are to be compared with the respective results of Figures 9 and 10. Com-
ments similar to those for the MUSCL-Hancock scheme apply. Generally, the two schemes,
and also the ADER-TVD, give similar results, but there are some small di�erences. For ex-
ample, for test 1, for both ADER schemes, the error in the position of the shock is slightly
larger than that from the MUSCL-Hancock scheme, compare Figures 9 and 11. Also, the be-
haviour of the ADER scheme under mesh re�nement for test 2 is more satisfactory, compare
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Figure 9. Test 1: MUSCL-Hancock TVD extension of the PRICE-T scheme (symbol) and exact solution
(line). Results at time t=5:0 s for mesh M =100 (left) and M =500 (right) and CFL=0:95.

Figures 10 and 12 for example. We believe that the ADER approach has potential advantages,
for example, when it comes to treating source terms. Also, there is a clear way of constructing
ADER schemes of even higher order of accuracy in space and time.

5. SUMMARY, CONCLUSIONS AND FURTHER DEVELOPMENTS

We have constructed six new basic schemes that are primitive (non-conservative) and centred
(non-upwind). PRICE-LW is a second-order accurate scheme, linear (and thus oscillatory);
this scheme is the primitive analogue of the two-step Lax–Wendro� method. PRICE-LF is
a primitive analogue of the classical conservative Lax–Fridrichs scheme. PRICE-G is a �rst-
order non-monotone centred analogue of the conservative centred scheme of Godunov. PRICE-
T is a �rst-order monotone scheme that is derived from a deterministic interpretation of the
staggered grid version of the Random Choice Method. PRICE-T is one of three primitive
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Figure 10. Test 2: MUSCL-Hancock TVD extension of the PRICE-T scheme (symbol) and exact
solution (line). Results at time t=2:5 s for mesh M =100 (left) and M =500 (right) and CFL=0:95.

analogues of the conservative FORCE scheme of Toro. Finally, PRICE-F and PRICE-S are
the other primitive analogues of FORCE; these schemes are �rst-order accurate and monotone.
All of these basic schemes have optimal stability condition of CFL unity. The only exception
to this is PRICE-G, which has a more restrictive stability condition. Useful schemes for
high-order extensions are PRICE-LF, PRICE-T, and PRICE-S, with PRICE-T being perhaps
the most attractive. We have extended some of the above schemes using two approaches
originally developed for conservative methods, namely the MUSCL-Hancock approach and
the ADER approach. In the ADER approach we have used two ways of dealing with linear
reconstructions so as to avoid spurious oscillations: the ADER TVD scheme and ADER
with ENO reconstruction. Extensive numerical experiments suggest that all the schemes are
very satisfactory, with the ADER=ENO scheme being perhaps the most promising, �rst for
dealing with source terms and secondly, because higher-order extensions are possible. Work
currently in progress includes the application of some of these ideas to solve the mud �ow
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Figure 11. Test 1: ADER=ENO extension of the PRICE-T scheme (symbol) and exact solution (line).
Results at time t=5:0 s for mesh M =100 (left) and M =500 (right) and CFL=0:95.

equations [8]. The schemes presented are generic and can be applied to any hyperbolic system
in non-conservative form and for which solutions include smooth parts, contact discontinuities
and weak shocks. The advantage of the schemes presented over upwind-based methods is
simplicity and e�ciency, and will be fully realized for hyperbolic systems in which the
provision of upwind information is very costly or is not available.

APPENDIX A: TVD CONSTRAINTS AND SLOPE LIMITERS

Regarding the limited slopes (di�erences) ��i in (45) we follow Section 14.4.3 of Reference [3]
and write

��i= �i�i (A1)
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Figure 12. Test 2: ADER=ENO extension of the PRICE-T scheme (symbol) and exact solution (line).
Results at time t=2:5 s for mesh M =100 (left) and M =500 (right) and CFL=0:95.

with �i given, for example, as

�i=
1
2
(1 +!)�i−1=2 +

1
2
(1−!)�i+1=2 (A2)

with �i+1=2 =Qn
i+1 − Qn

i and ! in the real interval [−1; 1]. This approach leads to a TVD
region for �(r) given as follows:

�(r)=0 for r60; 06�(r)6min{�L(r); �R(r)} for r¿0 (A3)
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where

�L(r) =
2�i−1=2r

1−!+ (1 +!)r

�R(r) =
2�i+1=2

1−!+ (1 +!)r

r =
�i−1=2
�i+1=2

(A4)

and

�i−1=2 =
2

1 + c
; �i+1=2 =

2
1− c

(A5)

The coe�cients �i−1=2 and �i+1=2 are in general functions of the Courant number c for the
single wave present in the scalar case, for which the TVD condition has been derived. For
convenience we eliminate this dependency by taking their limiting values �i−1=2 =�i+1=2 = 1 in
(A5). Slope limiters that are analogous to conventional �ux limiters, such as SUPERBEE and
MINBEE were constructed in Reference [3]. We stress however that they are only analogous,
not equivalent. A slope limiter that is analogous to the SUPERBEE �ux limiter is

�sb(r)=




0; if r60

2r; if 06r6 1
2

1; if 1
26r61

min{r; �R(r); 2}; if r¿1

(A6)

A van Leer-type slope limiter is

�vl(r)=

{
0; if r60

min{ 2r
1+r ; �R(r)}; if r¿0

(A7)

A van Albada-type slope limiter is

�va(r)=

{
0; if r60

min{ r(1+r)
1+r2 ; �R(r)}; if r¿0

(A8)

A MINBEE-type slope limiter is

�mb(r)=



0; if r60

r; if 06r61

min{1; �R(r)}; if r¿1

(A9)

In practice we recommend (A6) and (A7). Choices (A8) and (A9) are more di�usive.
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